Perbandingan Metode Radial Basis Function dan Multilayer Perceptron Terhadap Resiko Kredit Sepeda Motor
نویسندگان
چکیده
<table border="1" cellspacing="0" cellpadding="0"><tbody><tr><td valign="top" width="607"><p><em>Pada setiap pemilik showroom pasti banyak yang membuat promosi dengan cara mengkreditkan sepeda motor. Akan tetapi terjadi permasalahan nasabah membayar kredit motor terlalu lama sehingga kendala pada tersebut. Penyebab utama dari kesalahan tersebut adalah penilaian terhadap keputusan calon debitur. Sehingga peneliti mengganggap pentingnya untuk membahas Pada penelitian ini akan membandingkan metode Radial Basis Function dan Multilayer Perceptron menganalisa resiko dapat di lihat manakah lebih baik akurat kedua Pengujian dilakukan model Confusion Matrix Kurva ROC. ditarik kesimpulan Metode baik.</em><em> </em><em></em></p></td></tr></tbody></table>
منابع مشابه
The Petri Net Radial Basis Function Perceptron
This paper introduces the Petri Net Radial Basis Function Perceptron (PNRBFP), a modified Petri Net that exhibits behavior equivalent to that of a typical radial basis function Perceptron when used in neural networking applications under certain domain restrictions. The PNRBFP makes use of modified transitions to perform basis function calculations and 'fuzzy' style tokens to transport values o...
متن کاملMultilayer Perceptron, Radial Basis Function Network, and Self–organizing Map in the Problem of Face Recognition
In this contribution, one and two-stage neural networks methods for face recognition are presented. For two-stage systems, the Kohonen self-organizing map is used as a feature extractor and multiplayer perceptron (MLP) or radial basis function (RBF) network are used as classifiers. The results of such recognition are compared with face recognition using a one-stage multilayer perceptron and rad...
متن کاملComparison of Multilayer Perceptron and Radial Basis Function networks as tools for flood forecasting
This paper presents a comparison between two Artificial Neural Network (ANN) approaches, namely, Multilayer Perceptron (MLP) and Radial Basis Function (RBF) networks, in flood forecasting. The basic difference between the two methods is that the parameters of the former network are nonlinear and those of the latter are linear. The optimum model parameters are therefore guaranteed in the latter,...
متن کاملKnowledge extraction from radial basis function networks and multilayer perceptrons
Recently there has been a lot of interest in the extrac tion of symbolic rules from neural networks The work described in this paper is concerned with an evaluation and comparison of the accuracy and complexity of sym bolic rules extracted from radial basis function networks and multi layer perceptrons Here we examine the abil ity of rule extraction algorithms to extract meaningful rules that d...
متن کاملA Walsh Analysis of Multilayer Perceptron Function
The multilayer perceptron (MLP) is a widely used neural network architecture, but it suffers from the fact that its knowledge representation is not readily interpreted. Hidden neurons take the role of feature detectors, but the popular learning algorithms (back propagation of error, for example) coupled with random starting weights mean that the function implemented by a trained MLP can be diff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Infosys Journal: Information System Journal
سال: 2022
ISSN: ['2087-3085']
DOI: https://doi.org/10.22303/infosys.7.1.2022.25-33